منابع مشابه
Maximum Likelihood Competitive Learning
One popular class of unsupervised algorithms are competitive algorithms. In the traditional view of competition, only one competitor, the winner, adapts for any given case. I propose to view competitive adaptation as attempting to fit a blend of simple probability generators (such as gaussians) to a set of data-points. The maximum likelihood fit of a model of this type suggests a "softer" form ...
متن کاملTargeted Maximum Likelihood Estimation using Exponential Families.
Targeted maximum likelihood estimation (TMLE) is a general method for estimating parameters in semiparametric and nonparametric models. The key step in any TMLE implementation is constructing a sequence of least-favorable parametric models for the parameter of interest. This has been done for a variety of parameters arising in causal inference problems, by augmenting standard regression models ...
متن کاملTargeted maximum likelihood estimation for prediction calibration.
Estimators of the conditional expectation, i.e., prediction, function involve a global bias-variance trade off. In some cases, an estimator that yields unbiased estimates of the conditional expectation for a particular partitioning of the data may be desirable. Such estimators are calibrated with respect to the partitioning. We identify the conditional expectation given a particular partitionin...
متن کاملTargeted Maximum Likelihood Estimation for Pharmacoepidemiologic Research
BACKGROUND Targeted maximum likelihood estimation has been proposed for estimating marginal causal effects, and is robust to misspecification of either the treatment or outcome model. However, due perhaps to its novelty, targeted maximum likelihood estimation has not been widely used in pharmacoepidemiology. The objective of this study was to demonstrate targeted maximum likelihood estimation i...
متن کاملMaximum Likelihood Inverse Reinforcement Learning
OF THE DISSERTATION MAXIMUM LIKELIHOOD INVERSE REINFORCEMENT LEARNING
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Journal of Biostatistics
سال: 2006
ISSN: 1557-4679
DOI: 10.2202/1557-4679.1043